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Methods are developed to establish the limits of statistical uncertainty for values

computed from a pair distribution function (PDF) or models ®t to a PDF. This is

done by computation of a variance±covariance matrix for the PDF from the

uncertainties in the diffraction intensities. The application of this variance±

covariance matrix also offers optimal weighting for least-squares re®nement.

1. Introduction

Crystallographic analysis provides structural models as well as

estimates for the statistical uncertainty in the structural par-

ameters. These uncertainty estimates, known as standard

uncertainties (s.u.), do not include all possible error sources,

but are extremely valuable nonetheless as they allow scientists

to estimate when differences are too small to be taken

seriously.

For materials that lack long-range order, or where short-

range structure is not re¯ected in the long-range order of the

crystal, an alternative structural analysis approach is used. In

this method, sometimes called the real-space structure deter-

mination method, the pair distribution function (PDF) is

modeled in real space, rather than the reciprocal-space

powder diffraction data (Egami & Billinge, 2003). The PDF

re¯ects the short-range ordering in a material. This approach

has been widely used for studying the structures of glasses and

liquids since the 1930s (Debye & Menke, 1930; Warren, 1969;

Bowron & Finney, 2003). More recently, it has been applied to

disordered crystalline and partially crystallized materials

(Egami & Billinge, 2003). Quantitative structural information

on nanometer length scales can be obtained by ®tting a model

directly to the PDF (Dmowski et al., 1988; Proffen & Billinge,

1999; Petkov et al., 2002). It has been shown that, when there

are no short-range deviations from the average structure, the

PDF agrees well with the interatomic distances computed

from a crystallographic model (Toby & Egami, 1992; Peterson

et al., 2003). This real-space method is one of a very small

number of experimental techniques that can be used to probe

structure on the nanometer length scale, when this local

structure is not consistent with the long-range globally aver-

aged structure (Proffen et al., 2003).

In a previous paper, it was shown how to derive the s.u. for

the PDF values (Toby & Egami, 1992). That work, however,

does not treat the case when the PDF is interrogated to

determine structural parameters, since neighboring points in

the PDF are not statistically independent. In this paper, we

extend this derivation to s.u. for parameters ®tted to the PDF.

This allows, for the ®rst time, statistically justi®ed s.u. and

meaningful �2 values to be determined from real-space ®ts.

2. Background

2.1. Terminology

In the real-space method, powder diffraction data, I�Q�, are

collected over a wide range of Q (Q � 4� sin �=�). Typically,

data are used up to Q of >25 AÊ ÿ1 and in some cases in excess

of 50 AÊ ÿ1. Following the notations of Lovesey (1984) and

Warren (1969), the raw intensity values, I�Q�, are converted to

scaled and corrected intensity values, S�Q�, by compensation

for experimental artifacts such as multiple scattering, inelastic

scattering, container and sample self-shielding, spectral ¯ux,

and polarization (Egami & Billinge, 2003).

The PDF [��r� or G�r�] is computed from the Fourier

transform of Q�S�Q� ÿ 1�:

G�rk� �
2

�

X
j

Qj�S�Qj� ÿ 1� sin�Qjrk��Qj

and

��rk� � �0 �
1

2�2rk

X
j

Qj�S�Qj� ÿ 1� sin�Qjrk��Qj:

The PDF is similar to a spherically averaged Patterson func-

tion but incorporates both periodic and aperiodic information

owing to use of both Bragg and diffuse scattering information.

2.2. Propagation of errors in least-squares refinement

The notation ��pj� will be used to indicate the s.u. in

quantity pj, ��pj� � hfhpji ÿ pjg2i1=2, where h i indicates the

expectation value for a quantity. Our model will be repre-

sented as M�p�, with � parameters, pj, and n independent

observables, yi. The notation Mi�p� indicates the computed

value corresponding to yi. Following the derivations of Prince

(1994), the method of non-linear least-squares re®nement

determines the pj values that minimize
Pn

i�1 �
ÿ2
i �Mi�p� ÿ yi�2,
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where the s.u. values, �i, are used as weighting factors, by

iteratively solving the equation ATWAp � ATWy. Here the

n� � design matrix A is Aij � @Mi�p�=@pj and W is the n� n

weight matrix. Any values may be used for least-squares

weighting, but the smallest uncertainties for ®tted parameters

will be obtained when W is diagonal and matrix elements

re¯ect the uncertainties in the observations: Wii � 1=f��yi�g2.

The product matrix, ATWA, is called the Hessian and its

inverse, V � �ATWA�ÿ1, is called the variance±covariance

matrix. If a good ®t is obtained to the data, as noted by a value

of �2 near unity {�2 �Pn
i�1 w2

i �Mi�p� ÿ yi�2=�nÿ ��}, and

errors in the data follow a normal distribution, then the s.u. for

the ®tted parameters are obtained from the variance±covari-

ance matrix, ��pj� � �Vjj�1=2. When �2 � 1, it is common to

increase s.u. estimates by a factor of ��2�1=2, but this can either

underestimate or overestimate the actual uncertainties,

depending on the type of correlation between the omitted

parameters and the ®tted values.

2.3. Fitting to correlated values

The least-squares method can also be applied to ®t a model

to correlated values. In this case, the weight matrix is no longer

diagonal. Rather, it is the inverse of the variance±covariance

matrix for the `input' parameters. An example of this is where

a model is ®tted to previously ®tted parameters, p�. The

weight matrix for the second ®t, W�, will be W� � Vÿ1
� �

AT
�W�A�. It has been shown that the parameters and uncer-

tainties for a model ®tted to intermediate results is equivalent

to those ®tted directly to the original data, provided that

correlation is properly treated via the weight matrix (Prince,

1981).

2.4. Applications of the variance±covariance matrix

The variance±covariance matrix may be used to estimate

uncertainty even after a coordinate transformation. If we use a

transformation matrix, T, to transform a series of parameters

from one basis to another, q � TTp, the variance±covariance

matrix for q, Vq, is given by Vq � TTVpT, where Vp is the the

variance±covariance in the initial basis (Prince, 1994). Finally,

the variance±covariance matrix is also used to ®nd the s.u. of a

linear combination of the ®tted parameters. If we de®ne a

linear function of the parameters, f �p� � fTp, where f is a

vector, then the s.u. for this function is given by

��f �p�� � �fTVf�1=2 (Prince, 1994).

3. Standard uncertainty for S(Q)

For most diffraction measurements, I�Q� is measured using

detectors that directly count quanta. This means that

��I�Q�� � �I�Q��1=2 is true, except when I�Q� approaches zero.

For other detection mechanisms, such as image plates, careful

study is needed to establish ��I�Q��. For determination of

S�Q�, usual practice requires the combination of several data

sets, which establish instrument ¯ux and background as well as

sample scattering. As described previously, propagation of

uncertainties to ®nd ��S�Q�� is straightforward (Toby &

Egami, 1992). Commonly, smoothing is applied to the back-

ground and ¯ux determinations, which introduces minor

amounts of correlation between the S�Qi� values. It was found

that this correlation can safely be ignored. Alternatively, this

smoothing can be avoided, which eliminates correlation

between the S�Q� values.

4. Standard uncertainty for G(r) and q(r)

The Fourier transform relationship between S�Q� and the

PDF is simply a change of coordinates from a vector, s, of

values si � S�Qi� ÿ 1, to a vector, g, of values gj = G�rj� by

g � TT
Gs, where TG;ik � �2=��Qi sin�Qirk��Qi. Likewise,

de®ning vector q, where �j � ��rj� ÿ �0, then q � TT
� s, where

T�;ik � Qi sin�Qirk��Qi=�2�2rk�. We note that the uncertainty

on S�Qi� ÿ 1 is the same as that of S�Qi�; this means that

uncertainties for G�r� and ��r� can be obtained from variance±

covariance matrix V using V � TTVST, where VS is the

variance±covariance matrix for S�Q�. If S�Q� is computed

without smoothing then VS;ii � f��S�Qi��g2 and VS;ij � 0 for

i 6� j. This then allows VG to be simpli®ed as VG;jk �P
i TG;ijVS;iiTG;jk or

VG;jk �
4

�2

X
i

Q2
i sin�Qirj� sin�Qirk��Q2

i f��S�Qi��g2 �1�

and, likewise,

V�;jk �
1

4�4rjrk

X
i

Q2
i sin�Qirj� sin�Qirk��Q2

i f��S�Qi��g2: �2�

The diagonal terms of V� yield ���j� � �V�;jj�1=2, which

reproduces equation (26) of Toby & Egami (1992). The off-

diagonal terms are equivalent to equation (A5.3.13) of Egami

& Billinge (2003).

If smoothing is used to determine S�Q�, then equations (1)

and (2) are only approximate, due to the neglect of correlation

between S�Q� values. It is possible to include the off-diagonal

elements of VS. However, since this correlation is small, only

minor changes would be expected.

It is also worth noting that a sum of formP
i Q2

i sin�Qirj� sin�Qirk� will be largest when rj � rk and will

decrease as jrj ÿ rkj increases. This means that the most

signi®cant terms in VG or V� will be those closest to the

diagonal, provided that terms are ordered by increasing or

decreasing r. As discussed in Egami & Billinge (2003), this

degree of statistical correlation in the PDF decreases as the Q

range of the Fourier transform is increased.

5. Uncertainties on results from and fits to G(r) and q(r)

Commonly, ranges in G�r� and ��r� are integrated to deter-

mine a coordination number. Integration, differentiation or

other results are evaluated from the PDF by multiplying

individual G�r� values by constants and then summing them.

This means these results are linear functions of the PDF

values, which can be expressed as fTg, and thus the s.u. for the

result is given by ��fTg� � fTVGf.



As was discussed previously, the optimal weighting for

least-squares ®ts to the PDF occurs when the variance±

covariance matrix is used in the ®t. Thus, the function to be

solved is ATWGAp � ATg, where WG � Vÿ1
G . This is a slightly

more complex computation than that customarily done when

no off-diagonal terms are present in the weight matrix, but WG

need only be evaluated once when G�r� or ��r� is computed.

With modern computers, the time needed for the additional

m�m matrix multiplication step, where m is the number of

terms in the PDF (typically on the order of 103), should be

minor. However, if needed, a banded-matrix approximation

may be used to increase computational ef®ciency, since the

importance of the VG terms decreases with distance from the

matrix diagonal.

Finally, as was noted previously, the variance±covariance

matrix for the p parameters ®t in the model to G�r� is given by

Vp � �ATWGA�ÿ1. Thus, the s.u. on parameter pj is given by

��pj� � Vp;jj, provided that model gives a good ®t to G�r�.

6. Discussion and conclusions

This paper has shown how to compute standard uncertainties

on the PDF, on quantities derived from the PDF, and on

parameters ®t to the PDF. These uncertainties are derived in a

manner completely consistent with that used in crystal-

lographic analysis. Where Bragg scattering dominates the

contributions to the PDF, the uncertainties for models ®t to

the PDF will be essentially the same as those ®t via crystal-

lographic methods, provided the same data range is used in

both. However, it is impractical to perform Rietveld re®ne-

ment at very high Q ranges, so we speculate that PDF ®ts may

in fact offer higher precision. In practice, however, real-space

analysis is of greatest value for systems that cannot be

modeled well with Rietveld ®ts.

This paper has estimated statistical uncertainties in real-

space structure determination but has not considered the

separate issue of systematic errors. PDF computation requires

inclusion of many factors that may usually be ignored in

crystallographic studies. Properly, these corrections should be

considered part of the model and perhaps should be optimized

as part of the ®tting process. It should also be noted that some

instrumental effects, such as a Q-dependent resolution func-

tion, can be accurately modeled in a Rietveld ®t, but produce

aberrations in the PDF.

Our trust of crystallographic methods has been fostered

because diffraction data and crystallographic models often

agree within the expected statistical uncertainty. Further, the

resulting models have been cross-validated with results

obtained via other techniques. Thus, over its century of

development, crystallographic analysis has become one of our

most reliable scienti®c methods.

This validation process is still under way for PDF analysis.

The good agreement between crystallographic results and

real-space models obtained for selected crystalline materials

gives us con®dence that systematic errors are not severe. The

expressions developed here will now allow researchers to

identify when systematic errors are exceeding the expected

statistical ¯uctuations. This in turn may allow for improve-

ments in real-space-analysis techniques, but will also help

increase trust in real-space methods.

Finally, it should be noted that many sources of systematic

error can be removed using difference-PDF measurements,

where the change in the PDF due to variation of an experi-

mental parameter is computed. This is done at the expense of

increasing statistical uncertainty. In these cases, accurate

uncertainty estimation, as has been developed here, becomes

crucial.

This paper arose from discussions while planning the

Warren award symposium in honor of Takeshi Egami at the

2003 American Crystallographic Association meeting. We

would like to thank Professor Egami for introducing us to real-

space analysis. BHT would also like to thank Ted Prince for

very instructive lectures and many hours of inspiring discus-

sions. Work at MSU was supported by DOE through DE-

FG02-97ER45651 and by NSF through DMR-0304391.
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